ДЕЖУРНЫЙ ПО ВЕЧНОСТИ
Сергей Переслегин
ТОНКИЙ МИР



© Алена Куликова, илл., 2016


/экспертное мнение

/квантовый мир


Сила человеческого воображения имеет пределы, поэтому, увы, тысячи и тысячи фантастических миров уныло похожи друг на друга. Даже социальные и политические модели почти одинаковы, а уж что касается фантастики научной, где предполагается, что Вселенная является не только «полем игры», но и ее активным участником, там в лучшем случае Реальность соответствует уровню одних и тех же стереотипных учебников физики и астрономии для средней школы. В худшем — даже им не соответствует…

Огромная благодарность Майклу Крайтону и Стивену Спилбергу за то, что динозавры у нас в кино и книгах стали «не те, что прежде, а умные и по-новому вооруженные». Спасибо Вернору Винджу — он в «Затерянных в реальном времени» не только предложил мифологему технологической сингулярности, но и немножечко рассказал про тектонику плит. И конечно, есть киберпанк и стимпанк, и новые шаги развития робототехники вдруг сделали актуальными тексты Айзека Азимова 1960-х годов, однако в целом научная фантастика продолжает пережевывать те представления о Вселенной, которые сложились в науке к началу XX столетия, — ну иногда с косметическими улучшениями.

Поэтому будет справедливо сказать, что она перестала выполнять свою социальную функцию, которая со времен Жюля Верна в том и заключалась, чтобы синхронизировать общественное сознание с развитием науки.

Формально научная фантастика приняла специальную теорию относительности Эйнштейна, но проблема заключается в том, что как раз эта физическая модель носит подчеркнуто классический характер. В принципе, она могла бы появиться уже во времена Ньютона. Да, в некоторых отношениях эта модель впечатляюще красива, да, на ее основе можно было продемонстрировать читателю, как на самом деле работает физическое мышление, но, за вычетом пары рассказов типа «Планеты иллюзий» Фуджио Ишихары, все сводится к «эйнштейновскому замедлению времени», которое мы «проходили во втором классе».

Из общей теории относительности в фантастике встречаются удручающе классические черные дыры безо всяких следов хокинговского излучения. В фильме «Интерстеллар» была сделана попытка показать нечто большее. За попытку спасибо. Жаль, что не получилось.

Но хуже всего дело обстоит с квантовой механикой. Здесь, правда, критику научной фантастики придется расширить до критики науки и человеческого мышления в целом. Все-таки мы ленивы и нелюбопытны.

Подходы к квантовой механике наметились в конце XIX века в связи с опытами по фотоэффекту. Фотоэлемент был изобретен еще в 1888 году и с тех пор достаточно широко использовался в промышленности. Как он работает, было вполне понятно «на пальцах», но построить работоспособную теорию не получалось. Теория не только расходилась с экспериментом, данные эксперимента выглядели с позиции теории абсурдными и противоречащими здравому смыслу.

Далее, возникли проблемы с задачей, едва ли не учебной: излучение черного тела. Впервые физики встретились с ультрафиолетовой расходимостью: теория предсказывала исключительно быструю потерю энергии и «тепловую смерть» Вселенной за ничтожные доли секунды.

Опыт Резерфорда заставил ввести планетарную модель атома, интерпретировать результаты эксперимента как-то по-другому не получалось, но атом Резерфорда был в классической физике принципиально нестабильным образованием, и жить он мог все те же малые доли секунды.

Возникли проблемы и в химии, где никак не удавалось открыть эка-марганец, 43-й элемент таблицы Менделеева, и было ясно, что проблема — не в Периодическом законе.

Ранняя квантовая механика возникла как попытка справиться с перечисленными трудностями с помощью концепции корпускулярно-волнового дуализма. То есть предположили, что субатомные частицы одновременно являются и волнами, и частицами, можно заставить их проявлять и те свойства и другие, противоположные. Опыт Юнга для электрона показал, что так оно и есть на самом деле.

Между прочим, «лекарство» с самого начала оказалось горьким: пришлось отказаться от принципа исключения третьего — одного из важных постулатов аристотелевской рациональности. Но ограничиться этим не удалось. В 1927 году Вернер Гейзенберг формулирует принцип неопределенности. Невозможность одновременно измерить координату и импульс частицы разрушала физические представления о движении и ставила под сомнение саму физическую картину мира с ее постулатом о том, что любой физический параметр может быть измерен некоторым прибором с некоторой точностью. Выяснилось, что для описания физического микромира нужны операторный подход и неабелевые группы — там, где не выполняется коммутативность умножения.

Но и это не все. Эйнштейн, Подольский и Розен быстро доказали, что в мире, где выполняется соотношение неопределенностей, есть дальнодействие: частица А может оказывать влияние на частицу В, даже если они находятся в причинно не связанных областях пространственно-временного континуума (например, частица А упала в черную дыру и оказалась за горизонтом событий). То есть определенная группа элементарных частиц начинает повторять изменения состояния другой аналогичной группы, как бы далеко они не были разнесены. Добро пожаловать в мир телепортации! Между тем дальнодействие противоречило физической картине мира, со времен Ньютона оно было запрещено так же строго, как сверхсветовые звездолеты в современной науке.

Да еще все это было непредставимо. Квантовый мир нельзя было нарисовать, нельзя было описать чем-то, кроме математических формул. Или просто никто не попытался сделать это?



Как бы то ни было, к концу 1920-х годов квантовая механика как наука сложилась и начала работать. Теория согласовывалась с экспериментом. Теория была применима на практике (по крайней мере, на практике создания атомной бомбы). Теория позволяла предсказывать и давала возможность считать. Она не позволяла только понимать и представлять. И от требования физической наглядности просто отказались. Мир на микроуровне не соответствует человеческим представлениям, он может быть описан только математически.

Но, позвольте, Шредингер с самого начала показал, что явления микромира могут быть проявлены и в макромире. Хокинг говорит, что при словах «кот Шредингера» он хватается за пистолет, но в действительности сверхтекучий гелий — это тот же «кот Шредингера». Да и всем привычные редкоземельные магниты, удерживающие вес до четырехсот килограмм, тоже.

Как бы то ни было, 1930-е годы стали временем создания и продвижения квантовой механики, но не стали временем ее осмысления. Напротив, отсутствие наглядности, непредставимость, непонятность для профанов — все это стало предметом гордости квантовой механики. Фантасты, понятно, с физиками не спорили и изображать квантовый мир или хотя бы квантовые парадоксы не спешили. Нельзя, значит, нельзя.

Положение дел начало меняться к 1980-м годам, когда историческая фраза Ричарда Фейнмана «Там, внизу, полно места!» стала рассматриваться как обоснование крупных капиталовложений в нанотехнологии и наноиндустрию. Фантасты отреагировали. В 2008 году «Если» опубликовал великолепный рассказ Тэда Косматки «Предсказывая свет». Нил Стивенсон написал «Анафем», посвященный нетрадиционной эвереттовской трактовке квантовой механики. Впрочем, «Анафем» — роман десятилетия, если не века, и только этим его содержание не исчерпывается.

Довольно быстро определилось, что нанотех связан с размерами очень опосредованно: эти технологии действуют в квантовом мире, в основу их работы положены квантовые явления. Так что нанотехнологии могут иметь дело с объектами, которые «по крайней мере в одном из измерений менее 100 нм», — здесь точно работают законы квантовой механики, но к области применения нанотехнологий могут относиться и сколь угодно большие объекты. Земля, например. Можно быть почти уверенным, что ее магнитное поле представляет собой макроскопический квантовый эффект. Как говорится, и т. д…

На наш взгляд, размерные ограничения фиксируют лишь формальную сторону дела. Нанотехнологии используют квантово-механические эффекты. В этом их главное отличие от любых других технологий.

Можно рассматривать нанотехнологии как результат взаимодействия квантовой механики и обычных индустриальных технологий — металлургических, химических, электротехнических и электронных, машиностроительных и т. п. Все согласны с тем, что результатом развития нанотехнологий станет создание наноматериалов (нанометаллы, нанофильтры, наномембраны), наноустройств и переход от микро- к наноэлектронике. Мы полагаем, однако, что эти результаты носят частный характер. Магистральный путь развития нанотехнологий — это все более полное воплощение в материалах, механизмах и устройствах квантовых эффектов.




Тед Косматка.

Предсказывая свет

Многочисленные исследования выявили, что для квантовых систем состоянием по умолчанию является суперпозиция коллапсированной и неколлапсированной вероятностных волновых функций. Давно известно, что для коллапса волновой функции требуется факт субъективного наблюдения разумом или сознанием… Ниже мы сообщаем, что люди являются единственным из протестированных видов, способным вызывать коллапс волновой функции на фоне суперпозиции состояний, и эта способность действительно кажется уникальной развившейся характеристикой людей.


Квантово-механические эффекты обычно проявляются на малых расстояниях либо при низких температурах, но эти ограничения не являются физически необходимыми. Уже Эрвином Шредингером была показана возможность существования макроскопических квантовых эффектов, а сейчас мы пользуемся бытовой техникой, сделанной на их основе: лазеры, оптический компьютер, квантовая литография и прочее.

Любой квантово-механический эффект, сколь бы странным и экзотичным он ни был, рано или поздно будет воплощен в одной из нанотехнологий. Одним из важнейших направлений развития нанотехнологий станет практическая реализация квантовых парадоксов, прежде всего — парадокса Эйнштейна — Подольского — Розена.

Стоит заострить внимание на одном предельно важном понимании. В науке больше не происходит революций. Но сложилась ситуация, когда нужно если не перестраивать, то заново переосмысливать все ее здание: физическую картину мира, строение и эволюцию Вселенной, бэконовскую парадигму познания, построенную на осмысленном наблюдении и содержательном эксперименте.

Такое переосмысление может состояться только в рациональной дискуссии — человечество не придумало другой формы рефлексии познания. Давайте предположим, что в этом подчеркнуто неторопливом непрекращающемся разговоре свое место займет и новая высокотехнологичная научная фантастика. А формат разговора задаст футурология, владеющая современными методами исследования будущего.


Загрузка...