14. FOURTEEN

The Ugs have no real stories, hence no sense of their place in time. They have no conception of the future, and therefore no wish to change it.

We know that there are other futures ... As Ponder Stibbons remarks, we live in a multiplex universe. We look at the past and we see times and places where things could have been different, and we wonder whether we could have ended up in a different present. By analogy, we look at the present and imagine many different futures. And we wonder which of them will happen, and what we can do now to affect the choice.

We could be wrong. Maybe the fatalist view, 'it is written', is right. Maybe we are all automata, working out the deterministic future of a clockwork universe. Or maybe the Quantum philosophers are right, and all possible futures (and pasts) coexist. Or maybe everything that exists is just one point in a multiplex phase space of universes, a single card dealt from Fate's deck.

How did we acquire this sense of ourselves as beings who exist in time? Who remember their past, and use it to try (usually unsuccessfully) to control their future?

It all goes back a long, long way.

Watch a proto-human watching a zebra watching a lioness. The three mammalian brains are doing very different things. The herbivore brain has seen the lioness, is barely conscious (we guess, watch some horses in a field) of the whole 360 degrees of his environment, and has marked some things, like that tuft of grass over there, that female over there who could just be in heat, that male who's giving her the right signals, the three bushes that could have a surprise behind them .. the lioness moves, she suddenly gets priority, but not totally because there are other considerations. Another lioness could well be behind those bushes, and I'd better move up on that nice grass before Nigella does ... Looking at that grass makes me think of the taste of that long grass ... THE LIONESS IS MOVING.

The lioness is thinking: that's a nice zebra stallion, won't go for him he's too strong (memory of a previous eye injury from a zebra kick) but if I get him running, Dora behind those bushes can probably jump on the young female over there who is trying to attract the male, then I can run after it with her ...

There is probably no more of a plan than that in the zebra's brain but it does foresee a little bit of the future and plug memories into present planning. If I stand up now ...

The human is looking at the lioness and the zebra. Even if it's a Homo erectus, we bet it had stories in its head: that lioness will run out, the zebra will startle, the other lioness will go for ...

ah, that young female. Then I can run out there and get in front of the young male; I see myself running at him and hitting him with this stone. Homo sapiens may well have done better from the beginning; his brain was bigger and probably better. He may, from the beginning, have had room for several alternative, thought about 'or' scenarios and probably the 'and' one which goes

'and I will be a big hunter and meet interesting women'. 'If' probably came along later, perhaps with cave paintings, but making predictions put our ancestors way ahead of their predators and their prey.

There has been a variety of suggestions about why our brains suddenly grew to nearly double their previous size, from the need to keep the faces of our social group in mind while gossiping about them, to the need to compete with other hunter-gatherers, to the competitive nature of language and its structuring of the brain so that lying could be successful for the li-ar, but then the li-ee got better at detecting lies. Such escalations all have an attraction to them. They make good stories, ones that we can easily imagine, filling in the background just as we do with hearing sentences or enjoying pictures. That doesn't make them true, of course, just as our attraction to the supposed seashore phase of our history doesn't make 'aquatic apes' true either.

The stories serve as placeholders for whatever the real pressures were: the meta-explanation of why our brain growth took off is that competitive advantage was to be won by All Of The Above routes, and many more.

Perhaps the human viewer of that wildlife scene is a cameraman for a natural history TV series.

Even a mere 15 years ago, he would have had an Arriflex (or if he was paying for it himself, perhaps just a Bolex H16) 16mm film camera with a very precious 800 feet (260 metres) of film loaded, and perhaps another dozen film packs in his rucksack (800 feet gives about 40 minutes of filming: if you're very good, or very lucky, five minutes of useful stuff). Now he has a video camera that would have seemed miraculous then, which can reuse and reuse a length of tape until it's full of five-minute sequences, end to end. All the things he wished for, then, are in the apparatus in his hand now: it stays in focus, it compensates for a bit of wobble, it goes down to unbelievably low light levels (for those of us who grew up with photographic film) and it zooms over a range much wider than we ever had before.

It's magic, in fact.

And in his head are a dozen alternative scenarios for the lions and zebras, which he'll flick to instantly as the animals act to constrain their futures. He's actually thinking about other things altogether, letting the experienced professional part of his brain do the work while he daydreams

('I'll get an award for this and meet interesting women'). It's like driving on a quiet motorway: a lot of the thinking has been taken out of it.

Our ancestors honed that ability, to consider alternative scenarios. And within any of those scenarios, the ability to make a story of what was happening was a very powerful way to remember it and to communicate it. And, particularly, to employ it as a parable, to direct your future action or that of your children. Human beings need a very long time to get that brain upand- running, at least twice as long as their brother and sister chimpanzees. That is why threeyear- old chimps are nearly adult in chimp behaviour, and can do some of the mental tricks of six- or seven-year-old children.

But the young chimps don't hear stories. Our children have been hearing stories since they recognised any words at all, and by three years old they are making up their own stories about what is happening around them. We are all impressed by their vocabulary skills, and by their acquisition of syntax and semantics; but we should also note how good they are at making narratives out of events. From about five years old, they get their parents to do things for them by placing those things in narrative context. And most of their games with peers have a context, within which stories are played out. The context they create is just like that of the animal and fairy stories we tell them. The parents don't instruct the child how to do this, nor do the children have to elicit the 'right' storytelling behaviours from their parents. This is an evolutionary complicity. It seems very natural -after all, we are Pan narrans -that we tell stories to children, and that children and parents enjoy the activity. We learn about 'narrativium' very early in our development, and we use it and promote it for the whole of our lives.

Human development is a complex, recursive behaviour. It is not simply reading out DNA

'blueprints' and making another working part (contrary to the new folk-biology of genes). To show you how truly remarkable our development is, despite seeming so simple and so natural, let's have a look at some earlier parent-child behaviour.

Keep in mind a distinction that is being imported into more and more scientific thinking, that between 'complicated' and 'complex'. 'Complicated' means a whole set of simple things working together to produce some effect, like a clock or an automobile: each of the components -brakes, engine, body-shell, steering - contributes to what the car does by doing its own thing, pretty well.

There are some interactions, to be sure. When the engine is turning fast, it has a gyroscopic effect that makes the steering behave differently, and the gearbox affects how fast the engine is going at a particular car speed. To see human development as a kind of car assembly process, with the successive genetic blueprints 'defining' each new bit as we add them, is to see us as only complicated.

A car being driven, however, is a complex system: each action it takes helps determine future actions and is dependent upon previous actions. It changes the rules for itself as it goes. So does a garden. As plants grow, they take nutrients from the soil, and this affects what else can grow there later. But they also rot down, adding nutrients, providing habitat for insects, grubs, hedgehogs ... A mature garden has a very different dynamic from that of a new plot on a housing estate.

Similarly, we change our own rules as we develop.

There are always several superficially different, non-overlapping descriptions of any complex system, and one way to deal with a complex system is to collect these descriptions and choose appropriate ones for different ways of influencing its behaviour[46]. An amusingly simple example can be seen in many French and Swiss railway stations and airports: a sign that says LOST PROPERTY OBJETS TROUVES

The French means 'found objects'. But we don't think that this is a case of the English losing objects and the French finding them. It's two descriptions of the same situation.

Now look at a baby in a pram, throwing its rattle out on to the pavement for Mummy, or child- minder, or indeed passers-by, to retrieve. We probably think that the child is not coordinated enough yet to keep its rattle within reach: we think 'Lost Property'. Then we see Mummy give the rattle back to the child, to be rewarded with a smile, and we think 'No, it's more subtle: there is a baby teaching its mother to fetch, just as we adults do with dogs'. Now we think 'Objets Trouves'. The baby's smile is itself part of a complex, reciprocal system of rewards that was set up long ago in evolution. We watch babies copy' the smiles of parents -but no, it can't be copying, because even blind babies smile. Anyway, copying would be immensely difficult: from anywhere on the retina, the undeveloped brain must 'sort out' a face with a smile, then work out which of its own muscles to work to produce that effect, without a mirror. No, it's a pre-wired reflex. Babies reflexively react to cooing sounds and to pre-wired recognition of smiles; an upwardly-curved line on a piece of paper works just as well. The 'smile' icon rewards the adult, who then tries hard to keep the baby doing it. The complex interactions proceed, changing both participants progressively.

They can be analysed more easily in unusual situations, such as sighted children with 'signing'

parents, perhaps deaf or dumb, but occasionally as part of a psychological experiment. For example in 2001 a team of Canadian researchers headed by Laura Ann Petitto studied three children, about six months old, all with perfect hearing but born to deaf parents. The parents

'cooed over' the babies in sign language, and the babies began to 'babble' sign language -that is, make a variety of random gestures with their hands -in return. The parents used an unusual and very rhythmic form of sign language, quite unlike anything they would use to adults. Similarly, adults speak to babies in a rhythmic sing-song voice, and between the ages of about six months and a year the babies' babble takes on properties of the parents' specific language. They are rewiring and 'tuning' their sense organs, in this case the cochlea, to hear that language best.

Some scientists think that babbling sounds is just random opening and closing of the jaw, but others are convinced it is an essential stage in the learning of language. The use of special rhythms by parents, and the spontaneous 'babbling' with hand-movements when the parents are deaf, indicate that the second theory is closer to the mark. Petitto suggests that the use of rhythm is an ancient evolutionary trick, exploiting the natural sensitivities of the young child.

As the child grows, its complex interaction with surrounding humans comes to produce wholly unexpected results: what we call 'emergent' behaviour, meaning that it is not overtly present in the behaviour of the components. Where two or more systems interact like this, we call the process a complicity. The interaction of an actor with an audience can build up a wholly new and unexpected relationship. The evolutionary interaction of blood-sucking insects with vertebrates paved the way for protozoan blood parasites that cause diseases like malaria and sleeping- sickness. The car-and-driver behaves differently from either alone (and car-and-driver-andalcohol is even less predictable). Similarly, human development is a progressive interaction between the child's intelligence and the culture's extelligence: a complicity. This complicity progresses from simple vocabulary-learning to the syntax of little sentences and the semantics of fulfilling the child's needs and wants and the parents' expectations. The beginning of storytelling then becomes an early threshold into worlds that our kin the chimpanzees know not of.

The stories that all human cultures use to mould the expectations and behaviour of the growing child use iconic figures: always some animals, and then status-figures of the culture (princesses, wizards, giants, mermaids). These stories sit in all our minds, contributing to our acting, our acting-out, our thinking, our predicting what will happen next, as caveman or cameraman. We learn to expect outcomes of particular kinds, frequently expressed in ritual words ('And they all lived happily ever after' or 'So it all ended in tears')[47]. The stories that have been used in England over the centuries have changed in complicity with the changing culture -making the culture change, and responding to those changes, like a river changing its path across a wide flood-plain that it has itself built. The Grimm Brothers and Hans Christian Andersen were but the last of a long series, with Charles Perrault accumulating the Mother Goose tales around 1690; there were many collections before that, especially some interesting Italian groupings and retellings for adults.

The great advantage we all get from this programming is very clear. It trains us to do 'What if ...?' experiments in our minds, using the rules that we've picked up from the stories, just as we picked up syntax by hearing our parents talking. These stories-of-the-future enable us to set ourselves in an extended imagined present, just as our vision is an extended picture reaching much further out in all directions than the tiny central part to which we're paying attention. These abilities enable each of us to see ourselves as being set in a nexus of space and time; our 'here'

and 'now' form only the starting place for our seeing ourselves in other places at other times. This ability has been called 'time-binding', and has been seen as miraculous, but it seems to us that it is the culmination (for now) of an entirely natural progression that starts from interpreting and enlarging vision or hearing, and from 'making sense' in general. The extelligence uses this faculty, and hones and improves it for each of us, so that we can use metaphor to navigate our thoughts. Pooh Bear getting stuck, and unable to exit with dignity because he ate too much honey, is precisely the kind of parable that we carry with us to guide our actions, as metaphor, from day to day. So are Biblical stories, with all their lessons for life.

Holy books like the Bible and the Koran take this ability one giant step further. The Biblical prophets do, wholesale, what each of us has been programmed to do retail for our own life and those of our own nearest and dearest. The prophets predicted what would happen to everybody in the tribe if they continued their current behaviour, and thereby changed that behaviour. This was a step on the way to those modern prophets who predict The End Of The World some time soon.

They seem to feel that they have perceived a trend, a constraint in the universe, that the rest of us have not understood, and whose properties are directing the universe along some undesirable or calamitous path. Though they don't usually mean 'universe', they mean 'my world and nearer ones'. So far they haven't been right. But we would not be here to write these words if they had been, which is another anthropic issue, but not a very important one because they have been wrong rather often. They predict what will happen If This Goes On; but, increasingly it seems, This doesn't Go On for very long because it's unexpectedly replaced by a new This.

We all think that we can become better prophets with practice. We all think we have a clever way to build 'the road not taken' into our experience. Then we invent time travel, at least in our imaginations. We all want to go back to the beginning of that argument with the boss, and do it right this time. We want to unravel the chain of causality that led to boring edge people. We want to avoid the bad effects of elves but retain the good ones. We want to play pick-and-mix with universes.

However, despite their emphasis on prophecy, monotheist faiths have real trouble with multiple futures. Having simplified their theology down to one God, they also tend to believe that there can be only one 'right way to heaven'. The priests tell the people what they must do, and at least while the religion is fresh the priests are fine examples. This is what gets you to heaven, they say: no adultery, no murder, no failure to give a tithe to the Church, and no undercutting the other clergy for indulgences. Then the gateway to heaven becomes 'strait', narrower and narrower, until only the blessed and the saints can get in without spending time in some purgatory or other.

Other religions, notably extreme versions of Islam, promise heaven as the reward for a martyr's death. These ideas are more closely associated with barbarian views of the future than tribal ones: paradise, like Valhalla for the Norse heroes, will be full of the hero's rewards, from perpetually renewed women to ample food and drink and hero's games. But they are also associated, as they were not in the more purely barbarian Norse legends, with a belief in fate, in the will of a god that nothing can avoid or deny. This is the other way for authority to force obedience: the promise of ultimate reward is a very persuasive story.

Barbarians, for whom honour, glory, power, and love, dignity, bravely are the meaningful concepts, get plus points for denying authority and shaping events to their own desires. They have, among their gods and heroes, the mischievous unpredictable ones like Lemminkainen and Puck.

Barbarian nursery stories, like their sagas, laud the hero. They show how luck is associated with particular attitudes, especially a pure heart that does not seek immediate or ultimate reward.

There is frequently a test of this purity, from helping a poor blind cripple, who turns out to be a god in disguise, to curing or feeding a desperate animal, who comes to your aid later.

The agents in many of these stories are supernatural -out of the order of things, magical and causeless -'people', such as fairies (including fairy queens and fairy godmothers), avatars of the gods, demons, and djinni. People, especially heroes or aspiring heroes (such as Siegfried, but also Aladdin), attain control over these supernatural beings with the assistance of magic rings, named swords, spells, or merely by their own inner nobility. This changes their fortunes, and luck comes to be on their side; they win battles and bouts against long odds, they climb tall mountains, they kill immortal dragons and monsters. No tribal thinker would even dream of stories like these. For them, fortune favours the well-prepared.

Man is forever inventive, and we have stories that counter even the most heroic tales: the Sidh, the seven-foot-tall elves of Lords and ladies and old Irish folklore, the Devil who buys your soul and has you at his mercy even if you repent, the Grand Vizier, James Bond's opponents.

What is interesting in our discussion of stories here is the characters of these anti-heroes. They don't have any. Elves are the High Folk, but they don't have lives of their own; they are simply portrayed as being antithetic to what people, especially heroes, want to do. We don't care about the human aspects of James Bond's iconic enemies: they are always portrayed as being mindlessly cruel, or avid for power without responsibility and without having to overcome obstacles. They are ciphers, they don't have creative personalities, and they don't learn. If they did, one of them would have shot James Bond dead with a simple gun many years ago, after learning what happens to those who put their trust in laser beams and circular saws. They'd remove his watch first, too.

Rincewind would characterise the elves as 'edge fairies'. They don't tell stories to themselves or, rather, they keep telling the same old story.

It is natural to think of stories as resting on language, but the causality probably works the other way round. Gregory Bateson, in his book Mind and the Universe, devotes several chapters to human languages and how we use them to think. But his start on the subject is a beautiful mistake. He starts by looking at an 'outside' view of language, a kind of chemical analogy.

Words, he says, are obviously the atoms of language, phrases and sentences the molecules, atoms in combination. Verbs are reactive atoms, link nouns together, and so on. He discusses paragraphs, chapters, books ... and fiction, that he claims, very persuasively, is the ultimate triumph of human language.

Bateson shows us a scenario where an audience is watching a murder on stage, and nobody runs to phone the police. And then he goes into another mode, addressing his readers directly. He tells them that he felt that he'd done a really good job on the introduction to language, so he rewarded himself with a visit to the Washington Zoo. Almost the first cage inside the gate had two monkeys playing at fighting, and as he watched them, the whole beautiful edifice that he had written turned upside down in his mind. The monkeys had no verbs, no nouns, no paragraphs.

But they understood fiction perfectly.

What does this tell us? Not just that we can rewrite that scene with the boss in our minds. Not even that we can go and see her, and discuss what happened. Its most important implication is that the distinction between fiction and fact sits at the base of language, not at the pinnacle.

Verbs and nouns are the most rarefied of abstractions, not the original raw material. We do not acquire stories through language: we acquire language through stories.

Загрузка...