Как взлететь

В фантастике часто описываются космические торговые империи, перевозки грузов, исследовательские полёты и так далее. Тут тебе и звездолёты разных мастей, и космодромы, с которых эти звездолёты взлетают, и чего там только нет. Космические торговцы присутствуют практически в каждой книге, где дело так или иначе происходит в космосе. На кораблях стоят всякие антигравитаторы, двигатели на выдуманных веществах вроде элерия из X–COM и тому подобные прибамбасы, которыми авторы объясняют их устройство. Ну, для фантастики оно вполне годится. А что же в реальности?

А реальность — опять бессердечная сука.

Давайте для начала не будем затрагивать тему межзвёздных перелётов и попытаемся оторваться от матушки-Земли.

Что для этого нужно? Во-первых, поднять корабль на орбиту, преодолев земное притяжение. Во-вторых, сообщить ему вторую космическую скорость. Вопреки распространённому мнению, указанное на википедии значение в 11 км/сек — это значение такой скорости на уровне моря, выше оно постепенно уменьшается. Энергозатраты на движение ракеты состоят из двух факторов:

1. Потенциальная энергия.

2. Кинетическая энергия.

Как снизить их до минимума?

Очень популярны в фантастике антигравитаторы: включаешь такой, и всё — тяготение пропадает, взлетаешь себе спокойно, поплёвывая в потолок. Такая штука, по идее, устраняет компоненту потенциальной энергии (минус собственное потребление, разумеется), и кажется, что дело за малым — ускорить корабль и пусть летит себе. Но, во-первых, закон сохранения энергии никто не отменял, а во-вторых, если всё-таки заморочиться и провести хотя бы очень приблизительный, на уровне школьных формул восьмого класса расчёт (исходные данные: орбита вывода — 400 км, финальная скорость — 7,5 км/сек), выяснится, что компонента потенциальной энергии составляет всего около 14 % общей энергии, которую нужно сообщить аппарату. То есть на одном антигравитаторе далеко не улетишь.

Другое популярное направление — это придумать какой-нибудь элемент, сверхкрутое топливо. Такое топливо, для удобства назову его «хреноптаниум», как правило, представляет собой редкое, но очень энергоёмкое вещество, на пол-литре которого можно улететь хоть на Марс.

Тут самое время вспомнить Эйнштейна: E = mc^2.

Именно столько энергии выделяется при аннигиляции — реакции взаимодействия материи и антиматерии. Хреноптаниум, конечно, не антиматерия, и вряд ли из него получится выжать больше энергии, чем предлагает Эйнштейн. Но, как показывает практика, сильно больше и не нужно.

Для выхода на орбиту, если не думать о возможности физического воплощения двигателя на хреноптаниуме, такое вещество вполне годится. Если принять КПД за 100 % (в реальности значительная часть энергии аннигиляции улетает в виде нейтрино, то есть по сути впустую), то для вывода на орбиту в 400 км ракеты массой 23 тонны (полезная нагрузка первой версии Falcon 9) потребуется всего порядка ~5 миллиграмм антиматерии. Правда, фотонный двигатель нормально работать может только в безвоздушном пространстве… ну да это неважно. Двигатель на хреноптаниуме при общей его фантастичности нет смысла так ограничивать. Сколько энергии выделяется из хреноптаниума — чёрт его знает, но в качестве обоснуя — почему бы и нет? Ну пускай будет не 5 миллиграмм, а 5 грамм. Велика разница.

Однако энергетические затраты — лишь малая часть общей стоимости запуска. Куда больше денег требуют обеспечение стабильного полёта и затраты на изготовление одноразовых ступеней ракеты. Поэтому повышать КПД двигателя не так эффективно экономически, как упростить и удешевить его конструкцию. Или летать на многоразовых кораблях.

Ещё одним препятствием на пути к пыльным тропинкам далёких планет являются радиационные пояса. Обычно их изображают так:



Но это, конечно, очень упрощённое представление. В реальности всё выглядит примерно так:



Слева показано распределение интенсивности частиц с энергией больше 10 МэВ (внутренний пояс), справа — больше 1 МэВ (внешний), обе зоны имеют тороидальную форму, то есть форму бублика. Как можно заметить, чёткой границы у поясов нет, да и нечёткая постоянно меняется, а деление на внешний и внутренний очень условно. Однако вопрос о том, как преодолеть пояса, очевидным образом снимается: нужно всего лишь пролететь сквозь него у полюсов планеты, где интенсивность излучения минимальна. Именно так летали корабли миссий «Аполлон» на Луну. Структура обшивки командного модуля (внутренняя сэндвич-панель с алюминиевыми сотами, слой стеклопластика и внешняя стальная пластина) экранировала излучение с большим запасом, так что полученные астронавтами дозы не сильно отличались от доз, получаемых людьми на МКС. Для примера, на геостационарной орбите (да, как ни странно, она лежит в зоне внешнего пояса) для нормальной защиты достаточно алюминиевой пластинки с эффективной радиационной толщиной 0,01 г/см^2.

Другими словами, на первый взгляд это не такая уж большая преграда. Но — для ракеты. А вот для остального…

Космический лифт.

Один из самых популярных альтернативных методов отправки грузов на орбиту в тех книгах, где авторы вообще задумываются над этим вопросом. Ему посвящён целый роман Артура Кларка — «Фонтаны рая».

Лифт — это парящая на геостационарной орбите платформа с тросом, протянутым к Земле, и противовесом на внешней стороне. В теории это позволит выводить грузы на орбиту без использования жидкостных реактивных двигателей. Путь наверх займёт гораздо больше времени, но будет дешевле и безопасней.

В теории, разумеется.



Так это видит неизвестный художник. Правда, тут даже до орбиты МКС (400 км) далеко, не то что до геостационарной (35876 км).

На практике сперва лифт надо изготовить. Очевидно, что самая важная его часть — это трос. Его нельзя удлинять бесконечно, в какой-то момент он начнёт рваться под собственным весом независимо от толщины. Из современных конструкционных материалов для такого троса не годится ни один, все они обладают недостаточной удельной прочностью. Единственный потенциальный кандидат — это углеродные нанотрубки, но до создания высокопрочных материалов на их основе ещё очень далеко.

Однако конструирование лифта — это ещё не всё. Даже если отбросить такие тонкие моменты, как уязвимость устройства и необходимость как-то стабилизировать платформу, остаются упомянутые выше радиационные пояса. И если ракета может пролететь сквозь них у полюсов, то кабинка лифта — нет, потому что его нужно строить на экваторе. То есть там, где пояса самые толстые. Кроме того, надо пересекать ещё и гораздо более опасный внутренний пояс — перспектива не из приятных.

И эта проблема не менее сложна, чем проблема прочности троса. Ведь если ракета летит очень быстро, то на геостационарную орбиту по тросу кабинка лифта будет ползти несколько суток, а то и больше. Значительное время при этом она проведёт в зоне высокой радиации, вынуждая экипаж загорать под жёстким излучением.

С понятными последствиями.

Гаусс-пушка.

При упоминании гаусс-пушки 99.99 % людей представят себе оружие. Пушка же. Сталкер же. И ещё более 9000 игрушек. Неудивительно, но это не только и не столько пушка, сколько система для разгона чего угодно. Вот о ней-то и поговорим.

Суть сего изобретения в чём: есть ряд проводных катушек, называемых соленоидами, есть ствол, есть снаряд из ферромагнетика. Катушки включаются одна за другой, создавая электромагнитное поле, которое и разгоняет снаряд.

Вроде бы круто. Но дьявол таится… нет, не в деталях, а в электродинамике.

Для увеличения силы магнитного поля и, как следствие, ускорения снаряда сила тока должна быть как можно более высокой. Импульс же — как можно более кратковременным, иначе катушки будут тормозить разгоняющийся снаряд, кроме того, чем дольше длится импульс, тем больше энергии тратится впустую. Скорость нарастания импульса находится в обратной зависимости от индуктивности, а мощность создаваемого током магнитного поля — в прямой.

Объяснение для тех, кто ничего не понял: чтобы увеличить мощность, нужно увеличить индуктивность, а чтобы увеличить скорость снаряда — уменьшить индуктивность. Получается замкнутый круг. Так что эффекта рейлгана не ждите.

Впрочем, если прошибать рельс из гаусс-пушки и не получится, то её можно использовать как раз для вполне мирных целей — запуска спутников на орбиту. Понятное дело, тут тоже полно проблем. Например, низкий КПД системы — чтобы его повысить, нужны сверхпроводники, а с ними пока всё печально. Технически значимые материалы переходят в сверхпроводящее состояние при температурах уровня нескольких кельвинов, остальные же пока не имеют перспектив применения. Далее, сама конструкция должна иметь огромные размеры — порядка десятков и даже сотен километров, а если ограничивать перегрузки для вывода на орбиту пилотируемых кораблей (ну, не любит человек долговременные нагрузки по 10g, что уж тут поделать), то размеры становятся ещё больше. Один такой космодром обойдётся ох как недёшево, да и затраты на пуск далеко не факт что окажутся меньше, чем у традиционных ракет-носителей.



Так выглядит снаряд для разрабатываемой SpinLaunch системы. Воз, однако, и ныне там.

Куда больше перспектив запуска у этой штуки есть на Луне, где низкая сила тяжести позволяет резко уменьшить габариты установки, да и сопротивление воздуха мешать не будет. Вот об этом и писал Хайнлайн в «Луна — суровая хозяйка».

Ах да: корректное, то есть академическое название такой конструкции — «электромагнитная катапульта», и помимо прочего она используется как замена паровым катапультам на авианосцах. Вдруг пригодится.

Лазерный двигатель.

Интересная штука, не вышедшая, однако, за пределы моделей, а жаль. Во всяком случае, уж в фантастике она точно будет смотреться колоритно, но лично я ничего подобного нигде не встречал.

Суть её заключается… нет, не в мощном лазере, который толкает корабль вперёд, а в лазерном «поводке», который разогревает рабочее тело (обычно это простой воздух), сообщая с помощью этого процесса летательному аппарату кинетическую энергию. Основные составляющие — это наземная лазерная установка, обычно газовый лазер (Lightcraft Technologies использовала углекислотный), зеркала, фокусирующие лазер на рабочем теле, камера всаса, потребляющая атмосферный воздух, ну и традиционный химический двигатель для полёта в разрежённых слоях атмосферы. Однако в любом случае топлива для этого химического двигателя потребуется гораздо меньше.

Выглядит запуск так: корабль получает стартовый толчок, после чего включается лазер, пульсирующий с частотой примерно 25 Гц. С помощью фокусирующих зеркал воздух в рабочей камере разогревается до температур свыше 10000 градусов Цельсия, при которых он переходит в плазменное состояние.



С непривычки можно решить, что это НЛО.

Для реальных полётов конструкция достаточно фантастическая: нужны термостойкие материалы, с которыми всё не так хорошо, как хотелось бы, кроме того, нужны огромные мощности. Для запуска спутника весом 1 кг на низкую околоземную орбиту потребуется лазер в 1 мегаватт. С другой стороны, этим можно относительно дёшево запускать наверх крошечные аппараты. В общем, простора для воображения много.

Ракета-носитель.

Если спуститься с небес на землю и не вдаваться в философские бессмысленные проекты вроде космического фонтана (высоченной башни, постоянно находящейся в движении) или астроинженерные невозможные сооружения вроде опоясывающей Землю по экватору небесную эстакаду, на сегодня это единственный массово эксплуатирующийся (и, собственно, вообще единственный существующий) способ доставки грузов на орбиту.

При этом, как ни странно, в космической фантастике его не любят. Как правило, процедура взлёта там вообще описывается отстранённо, без подробностей, да и те если есть, ничего не говорят читателю. В целом это правильный ход: если автор пишет космооперу, меньше всего ему нужно ограничивать себя реальностью. В конце концов, у него в сюжете главное — это пиу-пиу, бах-бах, бдыщ и бух, ну и немного ох, ах и а-а-ах. Даже в твёрдой НФ это не так важно: скажем, концепт «Эдема» или «Соляриса» вообще никак не зависит от того, каким образом взлетают там корабли. Книга — о другом.

Но мы сейчас о реальности. А здесь, увы, альтернатив ракетам с химическими двигателями нет.

Концепт очень прост: есть большая ракета, битком набитая топливом, и есть маленький кораблик, который доставляется на орбиту с помощью этой ракеты. Основной принцип не менялся с 1957 года, единственное критически важное обновление — это появление многоразовых первых ступеней.

Как происходит запуск? Лучше один раз увидеть, чем миллиард раз прочитать, так что так что просто зайдите на ютуб и посмотрите запись запуска одной из ракет SpaceX: https://www.youtube.com/watch?v=mp0TW8vkCLg

Несложно увидеть, что орбиты ракета достигает всего за несколько минут. Ступени, израсходовавшие топливо, отделяются, чтобы облегчить всю систему — в авиации и космонавтике важен каждый грамм. В результате из многотонной ракеты вершины достигает лишь небольшая часть, всё остальное — это топливо и конструкции первых ступеней.

Насколько это эффективно экономически? Это зависит от ракеты, широты расположения космодрома (оптимальная — экватор), много от чего. Вот краткая сравнительная таблица (вывод на низкую околоземную орбиту):



Тут нужно кое-что пояснить. Да, запуск тяжёлой ракеты эффективнее в плане удельной цены. Зато общая стоимость запуска Electron предполагается в районе 5 миллионов долларов, а Фалькона — 60. Почувствуйте разницу: это примерно как грузовое такси-газелька и фура. Вторая, конечно, эффективнее, но если вам надо отвезти один-единственный холодильник, вы только зря потратите кучу денег.

И хотя из КПД жидкостного реактивного двигателя уже выжали все соки, отрасль всё равно развивается. Например, сейчас идёт постепенный переход от одноразовых ракет к многоразовым — «Фальконы» уже летали на использованных первых ступенях, что значительно удешевляет запуск. И есть ещё такие штуки, как космопланы и космолёты.

Самый банальный пример — «Спейс Шаттл». Сейчас модно рассуждать о том, что программа шаттлов себя не оправдала, что деньги вылетели в трубу и так далее, но, вообще говоря, это не совсем верно. Да, полёты обходились куда дороже запуска обычного беспилотного корабля ($775 000 000) — но зато шаттлы могли полноценно маневрировать на орбите, выводить туда целую команду космонавтов и выполнять задачи, которые были не под силу ни одному другому кораблю. Например, обслуживать «Хаббл». Поэтому неудивительно, что интерес к ним не угас и, хотя шаттлы отлетали своё, разрабатываются новые проекты.

Суть космоплана проста — это такой же корабль, взлетающий с помощью ракеты-носителя, но при этом способный лететь и сам. Обратно он возвращается как обычный самолёт, что является ещё одним преимуществом космоплана — он способен не только взять груз на орбиту, но и аккуратно его оттуда снять, что особенно важно, если мы говорим о бренных тушках космонавтов. В смысле, они могут спуститься и в капсулах, но это создаёт кучу проблем. Спускаться на шаттле как-то удобнее.



Суровый, брутальный, жестокий X-37.

Из современных подобных проектов, которые подают хоть какие-то признаки жизни, можно назвать Dream Chaser и X-37. Первый должен совершить реальный полёт с грузом в 2020, второй уже слетал пять раз и вроде бы успешно, но это не грузовой корабль, а летающая лаборатория, фактически многоразовый исследовательский спутник. О стоимости коммерческих запусков говорить пока не приходится.



Dream Chaser.

Ну а космолёт — это то же самое, только без ракеты-носителя. Взлетел — полетал на орбите — спустился. К сожалению, ни один из проектов пока реализован не был, но разработки ведутся. Конечно может показаться, что космолёт не мене фантастичен, чем аппарат с лазерным двигателем или космический лифт, но это не совсем верно. Он лишь требует нового типа двигателя. Таким вполне может выступить штука под названием Synergistic Air-Breathing Rocket Engine (SABRE), в своей фантастике я перевожу это как «синергетический двигатель». Разрабатывался он именно для доставки груза на орбиту без промежуточных ступеней. В качестве рабочего тела SABRE использует обычный воздух, по сути являясь комбинацией турбокомпрессора с охлаждающей установкой, которая на высоких скоростях охлаждает поступающий извне раскалённый воздух и воспламеняет его в камере сгорания вместе с жидким водородом. После достижения верхних слоёв атмосферы он переключается на безвоздушный режим. Для гиперзвуковых аппаратов, способных домчать вас за пару часов из Лондона в Лос-Анджелес, или для упоминавшихся выше космолётов на сегодня это буквально луч света в тёмном царстве.



SABRE в разрезе.

В целом, однако, перспективы печальные. Из совсем уж фантастических проектов ни один не находится даже в стадии разработки — только концепты. Остальные — разве что прототипы, успешных запусков не продемонстрировал пока ни один. Именно поэтому, например, в моей НФ-вселенной люди по-прежнему летают на пусть усовершенствованных, но по-прежнему тех же самых химических ракетных двигателях: лично я считаю, что альтернативы им не будет ещё очень, очень, очень долго. И не факт, что будет когда-либо вообще.

Загрузка...