24. A LACK OF SERGEANTS

WHAT WAS IT ABOUT VICTORIAN ENGLAND, and what led up to it, that made it so progressive, inventive and innovative? Why was it so different from Russia, China, and all the other nations that seem to have stagnated during the nineteenth century - accumulating wealth, but lacking a middle class full of engineers, sea captains, clerics, and scientists? We would not expect there to be one simple answer, one trick that Victorian England discovered but other nations did not. That would satisfy the innate human wish for a single thin causal chain, but as we've seen, history doesn't work like that.

Equally, though, it's unsatisfying just to list lots of possible contributory causes - the East India Company ... Harrison's excellent chronometer, which helped to make the British Empire so profitable and made aristocratic families send their younger sons fairly safely out into the Empire, from which they came back wiser and richer ... Quakers and other nonconformist sects, which were tolerated by the Anglican Church ... the Lunar Society's progeny, including the Royal Society and the Linnaean Society ... the College of Apprentices ... Parliament and the pretence of democracy, so that a middle class could rise from the merging of junior aristocrats who came back from the Empire to found pickle factories in Manchester ... artisans who were coming into towns looking for satisfying jobs.

We could make the list ten times longer, though in most cases we wouldn't be sure about genuine causal connections. And even with ten times as many `causes', we would still have to say `all of the above'.

Are such factors a cause of historical differences, or a consequence? That's not a sensible question if you insist on a yes/no answer - very probably the answer should be `both'. A modem analogue would be to ask whether today's space-oriented engineers and scientists are a cause of the success of space films and nailed-down science-fiction stories - or did the early scientifically oriented SF stories, with their sense of wonder at the sheer vastness and mystery of outer space, fire those engineers, when young, with the desire to turn fiction into fact? It must have been both, of course.

The early Victorian apprentices in pottery, ironworking, brick firing, and even bricklaying were respected by, and respected, their masters. Together they laid down enduring monuments for future generations. Similarly, early trains and canals connected all the major cities, and connected factories to their suppliers and customers. This transport system paved the way to the wonderful economic network that Edwardian Britain inherited from the Victorians. These systems were not static, to be admired for what they had achieved. They were dynamic, they changed, they were processes as much as achievements. They changed the way succeeding generations thought about where and how they lived. Even today, our cities rely heavily on what the Victorians built, especially when it comes to sewerage and water supplies.

The resulting changes in thinking fuelled further changes. The combination of cause and consequence is an example of what we have elsewhere called complicity[58]. This phenomenon arises when two conceptually distinct systems interact recursively, each repeatedly changing the other, so that they co-evolve. A typical outcome is that together they work their way into territory that would have been inaccessible to either alone. Complicity is not mere `interaction', where the systems join forces to achieve some joint outcome, but are not themselves greatly affected as a result. It is far more drastic, and it changes everything. It can even erase its own origins, so that neither of the original separate systems remains.

The social innovations that were (arguably but not solely) triggered by Victorian ingenuity and drive are just like that. Because there was selection, and because the best growth often occurs in the best run and best designed parts of growing systems, there was recursion. The next generation was inspired by the previous generation's successes, and their noble mistakes, and built a better world. What we might call the Channel Tunnel Syndrome occurs quite often in capitalist, democratic societies, but not in totalitarian states or even in nations like, say, today's Arab states or twentieth-century India. And particularly not in nineteenth-century Russia or China: both were rich, but they had no respectable middle class.

The Victorian middle class was respected both by the workers whose lives they exploited - and opened up - and by the aristocrats, whose increasingly international outlook was progressively integrated with trade. Russia and China had political systems without an economically powerful, shareholding middle class, which could start or follow fashions, and support romantic, visionary ventures. Today, the British will still support a Channel Tunnel venture or a Beagle-2 Mars lander, because such things are romantic and possibly heroic, even though they are unlikely to be very profitable. A lengthy historical record shows very clearly that the first attempt at any major tunnel usually collapses financially - though after the tunnel is successfully built - often after a long series of attempts to shore up a failing enterprise. Then the ruins are bought for a song, occasionally nationalised or considerably financed by government or some other major capital source, and the resulting business can stand on the shoulders of the first. Only some rather strained economics has so far kept the original companies involved in the Channel Tunnel in business, at least on the British side of the Channel where everything was done by private enterprise.

Some projects are so romantic, so attractive in concept but so very difficult in execution, that three or four attempts are needed for them to acquire momentum. It is recursive structure of the complicit kind that keeps them afloat[59]. Telford's bridges are famous, as are so many of his other engineering works; his ability to capitalise on his successes was the result, and the cause, of his fame, which was achieved by what would now be called `networking' among aristocrats, government ministers, and pickle manufacturers. He was, as they said, famous for being famous. In America similar enterprises were measured more by the anticipated financial return, the `bottom line'. So John D. Rockefeller, Andrew Carnegie, and their ilk were worth supporting because your investment was guaranteed to multiply, rather than because the enterprise was exciting `for Queen and Country'. Early twentieth-century America had gigantic, monolithic Ford ... while England had a variety of small engineering concerns like Morris Garages (MG).

The other major reason why societies like Victorian England can pick themselves up by their bootstraps and fly is one we've discussed earlier. They lift themselves out of the old constraints, and into a new set of rules. In The Science of Discworld and The Science of Discworld II we explained why the space bolas, a kind of enormous Ferris wheel in orbit, is capable of carrying people into space far cheaper than rockets - in fact, requiring less energy than anyone would calculate using Newton's laws of motion and gravity. We took one further step, and invoked the space elevator, a very strong cable hung from geostationary orbit, which would be harder to build but would require even less energy. The trick is that people and goods coming down can help to lift other people and goods up. The energetics satisfy all the standard mathematical rules, but the context supplies an unexpected source of energy.

These gadgets work better than rockets, but not because these use relativity or other clever new physics like quantum. Or because they don't obey Newton's laws, because they do, to the extent that these are still relevant. Instead, the bolas and the elevator have new invention immortalised into them, so that a spaceman who gets into the cabin of a bolas in thin upper atmosphere from a jet aircraft can shortly afterwards get out of the cabin 400 miles up. Going at the right speed, it so happens, to catch the passing cabin of a 400-mile space bolas, which can deposit him, days later, in the right orbit to catch the 15,000-mile bolas, which deposits him in geostationary orbit, 22,000 miles up, after a couple of weeks. Such machines can be powered by using them to drop valuable asteroid material down to Earth, or (in the case of the bolas) by `pumping' them like a garden swing, using motors in the middle powered by sunlight and reeling in or letting out the cabin tethers as the bolas rotates.

Once we've made the huge initial investment required to build such machinery, rocket technology becomes largely obsolete, just as animal traction was dispossessed by the internal combustion engine. Sure, you can't attach 500 horses to the front of a big canal-barge, because there wouldn't be room on the towpath - but a 500horsepower marine engine is another matter entirely. Sure, a rocket would use far too much fuel to be a practical method for hoisting goods and people into orbit en masse - but that's not the only way to get them there. Yes, Newton's laws still have to be obeyed, and you have to `pay' to set everything up, and it still costs just the same energy to get people into orbit. But nobody pays once the machinery is there. If you don't believe this, go up in an elevator in a skyscraper, noting how the counterbalance weights go down, and return to solid ground. Then, to ram the message home, walk up the stairs.

The wordprocessor we're using to type this book is a metaphorical space elevator compared to a manual typewriter (remember those? Maybe not). A modem automobile is a space elevator compared to a Ford model T or an Austin-7, which were themselves bolases, while 1880s steam cars were rockets. Think of the investment that went into the Victorian railway system, the canals - then realise how this immense investment changed the rules, so that later generations could do all kinds of things that were impossible to their forebears.

Victoriana, then, was not a situation, it was a process. A recursive process, which built itself new rules and new abilities, as previous hard work and innovation led to new capital, new money, and new investment. The new poor, downtrodden though they may have been, were much better off than the rural poor had been. Which is why people poured into the cities where their lives, even though Dickensian, were easier and more interesting than they had been in the countryside. The urban newcomers provided a new workforce to build new industries. They provided a useful consumer base too. Those workmen's cottages, still found in the suburbs of many towns, were not only housing for an exploited labour force; they were also a source of new wealth for that young aristocrat back from the Gold Coast who'd opened a pickle factory in Manchester. He had seen the sauces made in Madagascar or Goa, liked the taste, and thought that he could sell them to workmen to put on their sausages and bacon. Think of him for a moment, perhaps a chinless wonder who employed thirty men to mix the tropical-fruit ingredients and boil them in great cast-iron vats. The vats had been made in Sheffield and carried by narrow-boat along canals, giving coin to perhaps fifty workmen who supplied the original vats and buildings[60]: His pickle company supported a whole small industry for generations: supplying coke for heating, imported and locally grown fruit and spices to be processed into sauces, special water, glass bottles, printed labels ...

There would have been half a dozen middle-aged matrons busy at different tasks in his factory, too, even bossing some of the men. This was new - outside the home, anyway. Women also got jobs with him as cleaners, perhaps as secretaries to some of the senior staff, and women earning their own money was a massive wedge driven into a male-dominated society. In that society, it was rare even for courtesans to have control of their own funds, to that extent Mimi in La Boheme is more realistic than Flora in La Traviata. The laws and customs then were very different from what we accept as 'normal' now: young women and older ones were exploited sexually, large numbers of workmen died from industrial accidents and pollution[61]. Only through their suffering - and their triumphs - could the next generation be built.

Today's Britons are an integral part of this onward and upward process, and in order to see why the triumphs of our real Victorian history have lessons for us now, we must understand what happened then.

There was one major difference, among millions of individual tiny differences, between Victorian Britain and Russia (or China). The British had several sources of social heterogeneity, dissidence, of exposure to the public eye of things being done or understood in different ways. From the Baptist chapel to the Quaker meeting house, from the Catholic cathedral with its sweet music and incomprehensible prayers to the Jewish synagogues with their strangely cloaked and hatted congregants who turned into your lawyer or your accountant during the week, religion was obviously diverse. In Poland and Russia, there were pogroms (particularly during the late nineteenth century); in England, there were only taxes. Even in English prisons, very different religious practices were respected, perhaps as much in the breach as in the practice, but the theory was well known and encouraged - if not enforced - by the law. This freedom of thought, word and deed lasted. After the Second World War, after the defeat of Nazism at immense cost, with London still in ruins and food rationed, Sir Oswald Mosley was an avowed fascist whose Blackshirts came down to the East End of London to promote their racist views. Jack was involved in street fights with them about once a month. Even then, he was pleased that their horrible speeches were permitted by the law. In the USA or Russia, Mosley would either have been in jail or elected president. There was a context of heterogeneity, of difference being more than accepted, being valued with a smile. And this was part of an unbroken tradition, going back to Victorian times.

The big difference that made Victorian Britain successful, itself fostered recursively by all the success stories within it - and by the disparate nature of these successes, such as Quakers, railways, big beautiful bridges, fewer starving children, control of some diseases - was in the ambience, the context, which promoted difference. It has been fashionable for a particularly naive kind of historian of science to point to the social context of scientific theories, and to pretend that science is therefore entirely socially driven. It is usually claimed, by the same token, that this provenance denies science its authority, so its truths merely follow social convention.

Victorian evolutionists provide a precise refutation of that view.

Wallace, for example, was born to poor parents, was apprenticed to a watchmaker for a while (obviously one of our wizards had been instructed to achieve this), then became a successful - though indigent - land agent, then a more successful animal and plant collector. He never made enough money to join the upper middle class, even after his star had risen alongside Darwin's.

Darwin was a junior aristocrat, his parents were well off, and it would have been entirely proper for him to have become a curate - and, indeed to have written Theology of Species. Other proevolutionists, as various as Owen (mistaken by Darwin for an anti-evolutionist because of his careful analysis of the anatomical implications of the Darwin/Wallace natural-selection idea), Huxley, Spencer, Kingsley, were all from different strata of society. We have seen that the first printing of Origin of Species was inadequate for the market, and all copies were sold by the second morning after publication. Would that have happened in nineteenth-century India? In Russia under the czars, or after the revolution? In the United States ... possibly. And in the German part of Prussia. Dickens's stories, critical as they were of the existing order, were anxiously awaited by all strata of society in England - and by many in the eastern United States.

It would not have been quite so strange if this heterogeneous society involved different groups that picked up on different ideas, according to their various philosophies and theologies. However, what really happened, both to Dickens and to Darwin and later to Wells, was a very general appreciation of their radical ideas, very widely, across all of those diverse groups. The same alternative views were welcomed by many different strata of society. More so, perhaps, than in any other society since, heterodoxy was almost the rule. Working men's clubs were hotbeds of rational argument, thanks to the establishment of evening classes by the Workers' Educational Association. Education for the common man was promoted by the new technical colleges and the British Association for the Advancement of Science.

To some extent, the same went for all the embryo universities which, in Victorian times, had been seeded by philanthropic discussion groups in the big cities. These establishments, dark red-brick buildings found in the centres of all English industrial cities, were very different organisations from the ancient universities. The other half of the building, or the building opposite on the same street, was often the public library, an organisation not to be found in Russia or China at that time. These organisations provided a way up from manual labour to artisan, and there were a thousand such establishments all over Victoriana.

The real universities, of Oxford, Cambridge, Edinburgh, St Andrew's, were promoting orthodoxy via classics and the literary and governmental arts. The sciences were slowly coming in, mainly as theoretical physics and astrophysics, which needed only brains and blackboards, like mathematics. Practical sciences like geology and palaeontology, chemistry, and zoology went on in dark and dirty laboratories with tall glass and dark wood partitions; botany was backed up by aromatic herbaria. Such work had a very low status compared to mathematics and philosophy - it had associations with manual labour and dirt. However, archaeology, because of its continuing association with the classical world and its artefacts, had quite high status.

The burgeoning middle class didn't, by and large, aspire to these arcane practices. They wanted technical and scientific information, not to potter about with theories, however important and romantic. They didn't want classical anything, certainly not the classics. The universities proper were still requiring a classical education of all aspiring students, and even in the 1970s they continued to require competence in a foreign language from science entrants (as evidence, presumably, of some culture - they never required science or mathematics from arts or classics entrants). The workmen and the artisans' guilds cooperated to produce the apprenticeship system, and this was in many ways the model for their own educational organisations.

These, notably the WEA, provided exactly what was wanted, guided and monitored by the artisans' guilds and by the elected council representatives who helped oversee their relations with local industry, especially apprenticeship schemes. `City and Guilds' examinations, granting certificates and diplomas, were the educational currency of these self-organised educational systems, and they continued until the 1960s. They were the labels that qualified erstwhile labourers as artisans, worthy of respect by their peers.

This pulling yourself up by your bootstraps into respectable citizenship contrasts with the attitude to elected local councilmen by the universities that these organisations matured into. Like the ancient universities, new ones like Birmingham and Manchester rewarded local elected dignitaries, mayors, and councillors with honorary degrees. These empty titles, contrasting both with the earned certificates of the artisans and with the honorary degrees given to eminent scholars in recognition and respect, ensured a political allegiance - and devalued academia in general. Unfortunately, the profusion of such young universities in late twentieth-century England has meant that non-technical, even non-scientific subjects have again become fashionable, to the exclusion of that artisan education which was so healthy in late Victorian times. The devaluation of academic degrees of all kinds has continued apace, but at the same time the alternative and more worthy routes to self-advancement have atrophied.

Does this matter?

Indeed it does. Perhaps Owen Harry, who had himself risen from a poor Welsh beginning near Cardiffs Tiger Bay to become a very young chief technician in Jack's zoology dept at Birmingham University, and later became a senior lecturer at Belfast University, put this best when he described its main negative consequence as `a lack of sergeants'.

There is a story about officer training and examination in the British Army in the 1950s. One of the most important questions was 'How do you dig a trench?'. The correct answer was `I say "Sergeant, dig me a trench!"' Sergeants are people who organise the doing. They are not experts in what to do, or when: that's the prerogative of officers, who theoretically constitute the brains of the organisation. Officers decide what has to be done, but don't know how to do it. Sergeants don't actually do things, either, except occasionally when they have to. Their role is to organise squads of ignorant men, often incompetent, but well trained to obey orders, so that they cooperate effectively. Sergeants are the layer that makes cooperation effective: they know how to get things done. Privates know how to do what they're told, and are trained not to do anything else.

We didn't say efficient; it's a common mistake to see efficiency as something to be striven for. Efficiency is a concept borrowed from engineering and physics, a measure of how much you get out for how much you put in. Sergeants are in some respects the least efficient way of getting things done; they have a tendency towards repetition and sarcasm, confident that a few of their recruits will graduate from basic training with some degree of competence. But sergeants are very effective, and the system they are part of is very robust.

Darwin and Wallace, Spencer and Wells, all came up through a system that was very robust in this way. All of them, different as they were, knew that writing books was a prime way of affecting the society around you. There was no television, no films, and only a fraction of people went to the theatre or the opera ... mostly to music hall and pantomimes around Christmas. Dickens, Kingsley, the Bronte sisters, and Thomas Hardy made people - lots of people - think new thoughts and lead new lives. The working men's clubs and their links with the public libraries brought reading skills to a higher level than ever before.

So this audience was ripe for persuasive texts that could take them out of simple biblical knowledge into new theologies, even into atheism. Huxley, `Darwin's Bulldog', promoted Darwinism as the antithesis of a God-made world. From the aspiring middle class of Victoriana grew our modern secular age, with God relegated to the plaything of a few of the less modern clergy. Modern clergy don't believe in a twelve-foot Englishman up there in the sky, with Heaven as an eternal Buckingham Palace garden party. Particularly from those French philosophers who continued sophisticated theological criticism in lineages derived from Voltaire, our clerics learned to do without that strong Victorian style of Christianity. That form of Anglicanism, confident that God really was looking after the English, didn't need to embarrass itself with overt prayers. The rituals would suffice (provided they weren't noisy like the Welsh, or showy like the Catholics).

We have lost strong simple religion, we have lost academic excellence, we have gained a secular society that maintains the heterogeneity that made it so robust in Victorian times and later. However, we are now pursuing policies, particularly in education, that fail to provide society with all those able people who built the Victorian and Edwardian edifices, both material and theoretical.

There are routes away from this pessimism. In The Science of Discworld 2 we referred to humans as Pan narrans, the storytelling chimpanzee. Our overall message was that humans need to make stories to motivate themselves, to identify goals, and to distinguish good from evil.

Here we go a step further.

Technological and Civilised Man, we believe, must become Polypan multinarrans[62], to extend the metaphor rather further. Human beings must become ever more diverse, valuing and enjoying each other's differences rather than fearing them or suppressing them. And mere explanation is not enough. To gain understanding, a useful working philosophy as appropriate for action as for judgement and decision, an explanation is only rarely good enough. People find simple explanations satisfying because they enable thin causal chains of the kind we build for our own personal memories and causalities. But the real world, even the world of other people and their likes, dislikes, and prejudices - sometimes so rigidly held that our own lives and those of our loved ones don't matter to them - doesn't work like that.

We owe it to ourselves, and to those for whom we are responsible and those who respect us, to develop multi-causal understanding. We can do that, as suggested here, by simultaneously encompassing several explanations of each puzzle, explanations that disagree productively with each other. Multinarrans: many stories. So one person, even a Newton or a Shakespeare or a Darwin, will not really be enough, despite the story we have just told you. Our fictional Darwin is a symbol for an endless stream of Darwins, challenging orthodoxy and being right, a glorious network of innovative thinkers and radicals. People who try to keep ancient cultures alive by blowing up the competition achieve nothing, except widespread contempt for their objectives. They doom their own enterprise by their methods, and they betray a terrible lack of confidence that what matters to them can survive without coercion and violence.

Back to sergeants, and the way things are really done: `Sergeant, dig a trench.' This is how Polypan multinarrans gets things done. How many people are needed to understand a jet airliner? To build one? Recursion in technology really is like biological evolution, it really does expand the phase space. It expands it so much that most of us have virtually no understanding of how the world we live in works. In fact, it is essential that we don't, because there would be too much for anyone to understand.

But we do need to understand that this is what the world is like. Otherwise we don't just lose the sergeants: we lose the ability to build aircraft that fly, dishwashers that clean, cars that don't pollute (as much). We stop being able to cure (some of) the sick, to feed (most of) the planet, and to house, clothe, and wash a burgeoning humanity.

Our world is changing, and it's changing very fast, and we ourselves are the inescapable agents of that change. If we stagnate, like our fictional Victoriana, we die. Staying where we are is not an option. Static resources cannot continue to support us.

We make our world work by introducing new, undreamt-of rules and possibilities, by considering alternatives and making decisions, which feel like `free will', and work that way, even if they are `really' deterministic. We build on the present to create a bigger future. Science standing on technology, and technology standing on science, provide a successful ladder that leads to extelligence.

Is it, perhaps, the only one?

The past was another country, but the future is an alien world.

And yet ...

The most remarkable thing about the universe, as Einstein once said, is that it is comprehensible. Not in every aspect, but in enough to make us feel at home in it. It makes sense - almost as much as a Discworld story. Which is amazing because facts don't have to make sense: only well-crafted fiction has to obey such rigid rules.

Part of this comprehensibility can be explained. We evolved in the universe, and we evolved to survive in it. Being able to tell ourselves `what if stories about it - to understand it - has survival value. We have been selected, by nature, to tell such stories.

What is less easy to explain is why the universe can be represented by human stories at all. But then, if it wasn't, we wouldn't be telling them, would we?

Which brings us back to Charles Darwin, architect of our own present, which was his future, and would surely seem alien to any Victorian. In Chapter 18 we left him sitting on an `entangled bank', watching birds and insects, and musing on the nature of life. The final paragraph of The Origin, which began with gentle musings about entangled banks, now works its way to its revolutionary conclusion: From the war of nature, from famine and death, the most exalted object which we are capable of conceiving, namely, the production of the higher animals, directly follows. There is grandeur in this view of life, with its several powers, having been originally breathed into a few forms or into one; and that, whilst this planet has gone cycling on according to the fixed law of gravity, from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved.

Загрузка...